科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

电信类2309班模拟卷1

一、单选题 
设函数 $f(x)=\left\{\begin{array}{cc}g(x) \cos \frac{1}{x^2}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ 且 $g(0)=g^{\prime}(0)=0$, 则 $f(x)$ 在点 $x=0$ 处
$\text{A.}$ 连续但不可导. $\text{B.}$ 可导但 $f^{\prime}(0) \neq 0$. $\text{C.}$ 极限存在但不连续. $\text{D.}$ 可微且 $\left.\mathrm{d} f(x)\right|_{x=0}=0$.


下列直线中不是曲线 $y=\sqrt{4 x^2+x} \ln \left(2+\frac{1}{x}\right)$ 的渐近线的是
$\text{A.}$ $x=-\frac{1}{2}$. $\text{B.}$ $y=2 x \ln 2+\frac{1}{4} \ln 2+1$. $\text{C.}$ $y=2 x \ln 2+\frac{1}{4} \ln 2$. $\text{D.}$ $y=-2 x \ln 2-\frac{1}{4} \ln 2-1$.


$\lim _{x \rightarrow \infty} \frac{3 x-5}{x^3 \sin \frac{1}{x^2}}=$
$\text{A.}$ 0 $\text{B.}$ 3 $\text{C.}$ $-\frac{3}{8}$. $\text{D.}$ 1


设曲线 $L: y=f(x)$, 其中 $f(x)$ 为连续函数, $f^{\prime}(x)$ 的图象如图所示, 则
$\text{A.}$ $f(x)$ 有一个极大值点, 两个极小值点, 曲线 $y=f(x)$ 有两个拐点 $\text{B.}$ $f(x)$ 有两个极大值点, 一个极小值点, 曲线 $y=f(x)$ 有两个拐点 $\text{C.}$ $f(x)$ 有一个极大值点, 一个极小值点, 曲线 $y=f(x)$ 有两个拐点 $\text{D.}$ $f(x)$ 有两个极大值点, 一个极小值点, 曲线 $y=f(x)$ 有一个拐点


$\lim _{x \rightarrow 0} \frac{\ln \left(1+\tan ^2 x\right)-x^2}{x^4}$
$\text{A.}$ 1 $\text{B.}$ 1/2 $\text{C.}$ 1/6 $\text{D.}$ 1/4


设函数 $f(x)$ 在 $(0,+\infty)$ 内可导, 则下列命题中, 正确的个数是
(1) 若 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$.
(2) 若 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
(3) 若 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限.
(4) 若 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限.
$\text{A.}$ 0个 $\text{B.}$ 1个 $\text{C.}$ 2个 $\text{D.}$ 3个


设函数 $f_i(x)(i=1,2)$ 具有二阶连续导数, 且 $f_i^{\prime \prime}\left(x_0\right) < 0(i=1,2)$. 若两条曲线 $y=f_i(x)(i=1,2)$ 在点 $\left(x_0, y_0\right)$ 处具有公切线 $y=g(x)$, 且该点 处曲线 $y=f_1(x)$ 的曲率大于曲线 $y=f_2(x)$ 的曲率, 则在 $x_0$ 的某个邻域内 , 有
$\text{A.}$ $f_1(x) \leq f_2(x) \leq g(x)$. $\text{B.}$ $f_2(x) \leq f_1(x) \leq g(x)$. $\text{C.}$ $f_1(x) \leq g(x) \leq f_2(x)$. $\text{D.}$ $f_2(x) \leq g(x) \leq f_1(x)$.


二、填空题 
函数 $f(x)=\frac{\sqrt{1+2 x}-1}{x(x+1)(x-2)}$ 的无穷间断点为 ________ , $\lim _{x \rightarrow 0} f(x)=$



设 $f(x)=\frac{1}{x^2-3 x+2}$, 则 $f^{(n)}(0)=$



已知 $a, b$ 为常数, 求极限 $\lim _{x \rightarrow+\infty}\left(\frac{x^2}{(x-a)(x-b)}\right)^x=$



极限 $\lim _{n \rightarrow \infty} \frac{1}{n^3}\left[1^2+3^2+\cdots+(2 n-1)^2\right]=$



$\lim _{n \rightarrow \infty} \sqrt{n}(\sqrt{n+1}-\sqrt{n})$



三、解答题 
计算: $\lim _{x \rightarrow 0} \frac{\int_x^0 \ln (1+t) d t}{x^2}$ 。



 

设方程: $\left\{\begin{array}{l}x=3 t^2+2 t \\ y=e^y \sin t+1\end{array}\right.$, 求 $\left.\frac{d y}{d x}\right|_{t=0}$ 。



 

设 $0 < x_0 < \frac{\pi}{2}$ ,作迭代序列 $x_n=\sin \left(x_{n-1}\right) , n=1,2, \cdots$.
(1) 证明 $\lim _{n \rightarrow+\infty} x_n=0$
(2)证明 $\left\{n x_n^2\right\}$ 收敛,并求其极限



 

设函数 $f(x)$ 在闭区间 $[0,1]$ 上可微, 对于 $[0,1]$ 上的每一个 $x$, 函数 $f(x)$ 的值都在开区间 $(0,1)$ 内, 且 $f^{\prime}(x) \neq 1$. 证明: 在 $(0,1)$ 内有且仅有一个 $x$, 使 $f(x)=x$.



 

设函数 $f(x)$ 在区间 $[0,2]$ 上具有连续导数,且
$$
f(0)=f(2)=0, M=\max _{x \in[0,2]}\{|f(x)|\} .
$$
证明: (1) 存在 $\xi \in(0,2)$ ,使得 $\left|f^{\prime}(\xi)\right| \geq M$ ;
(2) 若对任意的 $x \in(0,2),\left|f^{\prime}(x)\right| \leq M$ ,则 $M=0$.



 

试卷二维码

分享此二维码到群,让更多朋友参与