考研数学
重点科目
其它科目

科数网

2023年球季概率论与数理统计模拟考试

数学

单选题 (共 5 题 ),每题只有一个选项正确
设 $A, B$ 为两个事件并且 $0 < P(A) < 1,0 < P(B) < 1$, 那么下列说法中不正确的是
$\text{A.}$ $P(A \mid B)>P(A \mid \bar{B})$ 的充要条件是 $P(A B)>P(A) P(B)$ $\text{B.}$ 若满足 $P(A \mid \bar{B})=P(B \mid \bar{A})$, 则 $P(A)=P(B)$ $\text{C.}$ 若满足 $P(A \mid \bar{B})=P(B \mid \bar{A})$, 则 $P(A)=P(B)$ 或者 $P(A \bigcup B)=1$ $\text{D.}$ 若 $P(A \mid \bar{B})+P(\bar{A} \mid B)=1$, 则 $A$ 和 $B$ 独立。

设 $X, Y$ 为两个随机变量, 其中 $E(X)=2, E(Y)=-1, D(X)=9, D(Y)=16$, 且 $X, Y$ 的相 关系数为 $\rho=-\frac{1}{2}$, 由切比雪夫不等式得 $P\{|X+Y-1| \leqslant 10\} \geqslant $ ________.
$\text{A.}$ $\frac{21}{25}$ $\text{B.}$ $\frac{87}{100}$ $\text{C.}$ $\frac{3}{4}$ $\text{D.}$ $\frac{4}{5}$

设随机变量 $X$ 的分布函数为 $F_X(x)=\left\{\begin{array}{l}0, x < 3 \\ 0.8,3 \leqslant x < 5 \\ 1, x \geqslant 5\end{array}\right.$, 随机变量 $Y$ 的分布函数为 $F_Y(x)=$ $\left\{\begin{array}{l}0, x < 5 \\ 0.2,5 \leqslant x < 7 \\ 1, x \geqslant 7\end{array}\right.$, 那么下列说法正确的是
$\text{A.}$ $P(X+Y=10)=0.68$ $\text{B.}$ 若 $X$ 与 $Y$ 不相关, 则 $X$ 与 $Y$ 独立 $\text{C.}$ $X+Y=10$ $\text{D.}$ $P(X=3, Y=7)=0.64$

已知随机变量 $X$ 的概率密度为 $f(x)$, 则随机变量函数 $Y=|X|$ 的概率密度 $f_Y(y)$ 为
$\text{A.}$ $f_Y(y)=f(y)+f(-y)$. $\text{B.}$ $f_Y(y)=\frac{f(y)+f(-y)}{2}$. $\text{C.}$ $f_Y(y)=\left\{\begin{array}{cc}f(y)+f(-y), & y>0, \\ 0, & y \leqslant 0 .\end{array}\right.$ $\text{D.}$ $f_Y(y)=\left\{\begin{array}{cc}\frac{f(y)+f(-y)}{2}, & y>0, \\ 0, & y \leqslant 0 .\end{array}\right.$

设总体 $X \sim N\left(\mu, \sigma^2\right),\left(X_1, X_2, \cdots, X_n\right)$ 为来自总体 $X$ 的简单随机样本, 令 $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$, $T=\sum_{i=1}^n\left(X_i-\bar{X}\right)^2$, 则下列结论正确的是
$\text{A.}$ $\frac{n(\bar{X}-\mu)^2+T}{\sigma^2} \sim \chi^2(n)$ $\text{B.}$ $\frac{\sqrt{n}(\bar{X}-\mu)}{\sqrt{T}} \sim t(n-1)$ $\text{C.}$ $\frac{\sqrt{(n-1)}(\bar{X}-\mu)}{\sqrt{T}} \sim t(n-1)$ $\text{D.}$ $\frac{\bar{X}-\mu}{\sqrt{T}} \sim t(n-1)$

解答题 (共 1 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设随机变量 $X$ 的概率密度函数为 $f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}$, 求随机变量 $Y=1-\sqrt[3]{X}$ 的概率密度函数 $f_{Y}(y)$.

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与