高等数学《微积分》-定积分专项训练

数学

本试卷总分150分,考试时间120分钟。
注意事项:
1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。

3. 考试结束后, 将本试卷和答题卡一并交回。

4.本试卷由kmath.cn自动生成。

学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设 $f(x)$ 是连续函数, $F(x)$ 是 $f(x)$ 的原函数,则
$\text{A.}$ 当 $f(x)$ 是奇函数时, $F(x)$ 必是偶函数 $\text{B.}$ 当 $f(x)$ 是偶函数时, $F(x)$ 必是奇函数 $\text{C.}$ 当 $f(x)$ 是是周期函数时, $F(x)$ 必是周期函数 $\text{D.}$ 当 $f(x)$ 是单调增函数时, $F(x)$ 必是单调增函数

设 $f(x)$ 为连续函数, $I=t \int_0^{\frac{s}{t}} f(t x) \mathrm{d} x$ ,其中 $s>0, t>0$, 则 $I$ 的值
$\text{A.}$ 依赖于 $s$ 和 $t$ $\text{B.}$ 依赖于 $\mathrm{s}, \boldsymbol{t}, \boldsymbol{x}$ $\text{C.}$ 依赖于 $t$ 和 $x$ ,不依赖于 $s$ $\text{D.}$ 依赖于 $s$ ,不依赖于 $t$

设 $I_k=\int_0^{k \pi} e^{x^2} \sin x \mathrm{~d} x(k=1,2,3)$ ,则有
$\text{A.}$ $I_1 < I_2 < I_3$ $\text{B.}$ $I_3 < I_2 < I_1$ $\text{C.}$ $I_2 < I_3 < I_1$ $\text{D.}$ $I_2 < I_1 < I_3$

设三个积分分别为
$$
\begin{gathered}
\mathrm{M}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos ^4 x \mathrm{~d} x, \\
N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^3 x+\cos ^4 x\right) \mathrm{d} x, \\
P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^2 \sin ^3 x-\cos ^4 x\right) \mathrm{d} x,
\end{gathered}
$$
$\text{A.}$ $N < P < M$ $\text{B.}$ $M < P < N$ $\text{C.}$ ${N} < M < P$ $\text{D.}$ $P < M < 1$

设 $a_n=\frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} \mathrm{~d} x$ ,则极限 $\lim _{n \rightarrow \infty} n a_n$ 等于
$\text{A.}$ $(1+e)^{\frac{3}{2}}+1$ $\text{B.}$ $\left(1+e^{-1}\right)^{\frac{3}{2}}-1$ $\text{C.}$ $\left(1+e^{-1}\right)^{\frac{3}{2}}+1$ $\text{D.}$ $(1+e)^{\frac{3}{2}}-1$

设 $$
\begin{aligned}
M & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^2}{1+x^2} \mathrm{~d} x, \\
N & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+x}{e^x} \mathrm{~d} x \\
K &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1+\sqrt{\cos x}) \mathrm{d} x ,
\end{aligned}
$$
则 $M, N, K$ 的大小关系为
$\text{A.}$ $M>N>K$ $\text{B.}$ $M>K>N$ $\text{C.}$ $K>M>N$ $\text{D.}$ $K>N>M$

填空题 (共 11 题 ),请把答案直接填写在答题纸上
求 $\lim _{x \rightarrow 0} \frac{\int_0^x(x-t) f(t) \mathrm{d} t}{x \int_0^x f(x-t) \mathrm{d} t}$, 其中 $f(x)$ 连续且 $f(0) \neq 0$.


设 $f(x)$ 是周期为 2 的连续函数:
(1) 证明对任意实数 $t$ ,有 $\int_t^{t+2} f(x) \mathrm{d} x=\int_0^2 f(x) \mathrm{d} x$ ;
(2) 证明 $G(x)=\int_0^x\left[2 f(t)-\int_t^{t+2} f(s) \mathrm{d} s\right] \mathrm{d} t$ 是周期为 2 的周 期函数.


设 $f(x)=\int_1^x \frac{\ln t}{1+t} \mathrm{~d} t$ ,其中 $x>0$ ,求 $f(x)+f\left(\frac{1}{x}\right)$.


设 $f(x)$ 是区间 $\left[0, \frac{\pi}{4}\right]$ 上的单调、可导函数,且满足
$$
\int_0^{f(x)} f^{-1}(t) \mathrm{d} t=\int_0^x t \frac{\cos t-\sin t}{\sin t+\cos t} \mathrm{~d} t
$$
其中 $f^{-1}$ 是 $f$ 的反函数,求 $f(x)$.


设 $f(x)$ 在 $(-\infty,+\infty)$ 内满足
$$
f(x)=f(x-\pi)+\sin x ,
$$
且 $f(x)=x, x \in[0, \pi)$ ,计算 $I=\int_\pi^{3 \pi} f(x) \mathrm{d} x$.


设函数 $f(x)$ 可导,且 $f(0)=0$ ,
$$
F(x)=\int_0^x t^{n-1} f\left(x^n-t^n\right) \mathrm{d} t,
$$
求 $\lim _{x \rightarrow 0} \frac{F(x)}{x^{2 n}}$.


设函数 $f(x)$ 连续, $g(x)=\int_0^1 f(x t) \mathrm{d} t$ ,且 $\lim _{x \rightarrow 0} \frac{f(x)}{x}=A$ , $A$ 为常数. 求 $g^{\prime}(x)$ 并讨论 $g^{\prime}(x)$ 在 $x=0$ 处的连续性.


设 $f(x)$ 在 $[a, b]$ 上连续, $x \in(a, b)$ ,证明:
$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_a^x[f(t+h)-f(t)] \mathrm{d} t=f(x)-f(a) .
$$


求 $\lim _{x \rightarrow+\infty} \sqrt[3]{x} \int_x^{x+1} \frac{\sin t}{\sqrt{t+\cos t}} \mathrm{~d} t$.


设 $f(x)$ 在 $(-\infty,+\infty)$ 上具有连续导数,且
$$
|f(x)| \leq 1, f^{\prime}(x)>0, x \in(-\infty,+\infty),
$$
证明:对于 $0 < \alpha < \beta$ ,成立
$$
\lim _{n \rightarrow \infty} \int_\alpha^\beta f^{\prime}\left(n x-\frac{1}{x}\right) \mathrm{d} x=0
$$


设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内连续,且
$$
F(x)=\int_0^x(x-2 t) f(t) \mathrm{d} t ,
$$
试证: (1) 若 $f(x)$ 为偶函数,则 $F(x)$ 也是偶函数;
(2) 若 $f(x)$ 单调不增,则 $F(x)$ 单调不减.