查看原题
在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$,若$A=\dfrac{\pi}{3}$,$b=2$,$c=3$,则$\dfrac{a-2b+ 2c}{\sin A-2\sin B+2\sin C}$的值等于(  )
A. $\sqrt{21}$     B. $\dfrac{2\sqrt{21}}{3}$     C. $\dfrac{4\sqrt{7}}{3}$     D. $\dfrac{4\sqrt{3}}{3}$         
不再提醒