在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$,若$A=\dfrac{\pi}{3}$,$b=2$,$c=3$,则$\dfrac{a-2b+ 2c}{\sin A-2\sin B+2\sin C}$的值等于( )
$\text{A.}$ $\sqrt{21}$
$\text{B.}$ $\dfrac{2\sqrt{21}}{3}$
$\text{C.}$ $\dfrac{4\sqrt{7}}{3}$
$\text{D.}$ $\dfrac{4\sqrt{3}}{3}$