清空
下载
撤销
重做
查看原题
设 $f(x)$ 连续且 $f(x+2)-f(x)=\frac{1}{\sqrt{1-x^2}}, \int_0^2 f(x) \mathrm{d} x=\frac{\pi}{2}$ , 则
$$
\int_1^3 f(x) \mathrm{d} x=
$$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒