清空
下载
撤销
重做
查看原题
设 $f(x)$ 在 $[0,1]$ 上具有二阶导数, 且满足条件 $|f(x)| \leqslant a,\left|f^{\prime \prime}(x)\right| \leqslant b$, 其中 $a, b$ 都是非负常数, $c$ 是 $(0,1)$ 内任意一点.
(1) 写出 $f(x)$ 在点 $x=c$ 处带拉格朗日型余项的一阶泰勒公式;
(2) 证明 $\left|f^{\prime}(x)\right| \leqslant 2 a+\frac{b}{2}$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒