科数网
试题 ID 917
【所属试卷】
1996年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
设 $f(x)$ 在 $[0,1]$ 上具有二阶导数, 且满足条件 $|f(x)| \leqslant a,\left|f^{\prime \prime}(x)\right| \leqslant b$, 其中 $a, b$ 都是非负常数, $c$ 是 $(0,1)$ 内任意一点.
(1) 写出 $f(x)$ 在点 $x=c$ 处带拉格朗日型余项的一阶泰勒公式;
(2) 证明 $\left|f^{\prime}(x)\right| \leqslant 2 a+\frac{b}{2}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 在 $[0,1]$ 上具有二阶导数, 且满足条件 $|f(x)| \leqslant a,\left|f^{\prime \prime}(x)\right| \leqslant b$, 其中 $a, b$ 都是非负常数, $c$ 是 $(0,1)$ 内任意一点.
(1) 写出 $f(x)$ 在点 $x=c$ 处带拉格朗日型余项的一阶泰勒公式;
(2) 证明 $\left|f^{\prime}(x)\right| \leqslant 2 a+\frac{b}{2}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见