清空
下载
撤销
重做
查看原题
设 $f(x)$ 连续, $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$. 求极限 $\lim _{x \rightarrow 0}\left[1+\int_0^x t f\left(x^2-t^2\right) d t\right]^{({tan} x-x) \ln (1+x)}$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒