科数网
试题 ID 8307
【所属试卷】
武忠祥2023年7月每日一题集锦
设 $f(x)$ 连续, $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$. 求极限 $\lim _{x \rightarrow 0}\left[1+\int_0^x t f\left(x^2-t^2\right) d t\right]^{({tan} x-x) \ln (1+x)}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 连续, $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$. 求极限 $\lim _{x \rightarrow 0}\left[1+\int_0^x t f\left(x^2-t^2\right) d t\right]^{({tan} x-x) \ln (1+x)}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见