查看原题
设 $u=f(x, y, z), \varphi\left(x^{2}, \mathrm{e}^{y}, z\right)=0, y=\sin x$, 其中 $f, \varphi$ 都具有一阶连续偏导数, 且 $\frac{\partial \varphi}{\partial z} \neq 0$, 求 $\frac{\mathrm{d} u}{\mathrm{~d} x}$.
                        
不再提醒