清空
下载
撤销
重做
查看原题
设函数 $f(x)=a e^{x} \ln x+\frac{b e^{x-1}}{x}$, 曲线 $y=f(x)$ 在点 (1, $f(1 )$ 处 得切线方程为 $y=e(x-1)+2$.
(I) 求 $a 、 b$;
(II ) 证明: $f(x)>1$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒