查看原题
设二维连续型随机变皇 $(X, Y)$ 的概率密度函数为
$$
f(x, y)=\left\{\begin{array}{cc}
C e^{-2 x}, & x>0,0 < y < x, \\
0, & \text { 其它. }
\end{array}\right.
$$
1. 确定常数 $C$ 的值;
2. 求 $X$ 与 $Y$ 边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$, 并判断 $X$ 与 $Y$ 是否独立;
3. 求 $Z=X+Y$ 的概率密度函数 $\mathrm{f}_{\mathrm{Z}}(z)$;
4. 求概率 $P(X \leq Y+2)$.
                        
不再提醒