清空
下载
撤销
重做
查看原题
已知直线 $l_1: x+m y-3 m-1=0$ 与 $l_2: m x-y-3 m+1=0$ 相交于点 $M$, 线段 $A B$ 是圆 $C:(x+1)^2+$ $(y+1)^2=4$ 的一条动弦, 且 $|A B|=2 \sqrt{3}$, 则 $\overrightarrow{M A} \cdot \overrightarrow{M B}$ 的最小值为
A. $6-4 \sqrt{2}$
B. $3-\sqrt{2}$
C. $5+\sqrt{3}$
D. $\sqrt{5}-1$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒