已知直线 $l_1: x+m y-3 m-1=0$ 与 $l_2: m x-y-3 m+1=0$ 相交于点 $M$, 线段 $A B$ 是圆 $C:(x+1)^2+$ $(y+1)^2=4$ 的一条动弦, 且 $|A B|=2 \sqrt{3}$, 则 $\overrightarrow{M A} \cdot \overrightarrow{M B}$ 的最小值为
$\text{A.}$ $6-4 \sqrt{2}$
$\text{B.}$ $3-\sqrt{2}$
$\text{C.}$ $5+\sqrt{3}$
$\text{D.}$ $\sqrt{5}-1$