查看原题
设 $f(x)$ 在 $[0,+\infty)$ 上可微, $f(0)=0$ ,且 存在常数 $A>0$, 使得 $\left|f^{\prime}(x)\right| \leq A|f(x)|$ 在 $[0,+\infty)$ 上成 立,试证明在 $(0,+\infty)$ 上有 $f(x) \equiv 0$.
                        
不再提醒