查看原题
(I) 设 $f(x)$ 是 $[0,+\infty)$ 上单调减少且非负的连续函数. 证明:
$$
f(k+1) \leqslant \int_k^{k+1} f(x) \mathrm{d} x \leqslant f(k)(k=1,2, \cdots)
$$
(II) 证明 : $\ln (1+n) \leqslant 1+\frac{1}{2}+\cdots+\frac{1}{n} \leqslant 1+\ln n$, 并求极限 $\lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{\ln n}$.
                        
不再提醒