清空
下载
撤销
重做
查看原题
已知函数 $f(x)$ 及其导函数 $f^{\prime}(x)$ 的定义域均为 $\mathbf{R}$, 且满足 $f(x)=f(-x)-2 x, x>0$ 时, $f^{\prime}(x)+1>0$. 若不等式 $f(x+\ln a)>f(x)-\ln a$ 在 $[-2,+\infty)$ 上恒成立, 则 $a$ 的取 值范围是
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒