查看原题
设 $a, b$ 满足条件 $a \geqslant 0, b \leqslant 0$ 及 $\int_a^b|x| \mathrm{d} x=-\frac{1}{2}$, 求直线 $y=a x$ 与抛物线 $y=x^2+b x$ 所围 成区域的面积的最大值与最小值.
                        
不再提醒