清空
下载
撤销
重做
查看原题
设 $\Sigma$ 是球面 $x^2+y^2+z^2=R^2$ 的外侧, $\cos \alpha, \cos \beta, \cos \gamma$ 是其外法向量的方向余弦,则
$$
\iint_{\Sigma} \frac{x \cos \alpha+y \cos \beta+z \cos \gamma}{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}} \mathrm{~d} S=
$$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒