查看原题
设函数 $f(x)$ 在 $[a, b]$ 上连续.
(1) 证明存在 $\xi \in(a, b)$, 使得 $\int_a^{\varepsilon} f(x) \mathrm{d} x=(b-\xi) f(\xi)$;
(2) 如果 $f(x)$ 在 $(a, b)$ 内取得最大值和最小值, 证明存在 $\eta \in(a, b)$, 使得
$$
\int_a^\eta f(x) \mathrm{d} x=(\eta-a) f(\eta) .
$$
                        
不再提醒