查看原题
数列 $\left\{a_n\right\}$ 的各项均为实数, $S_n$ 为其前 $n$ 项和, 对任意 $k>2022(k \in \mathbf{N})$ 都有 $\left|S_k\right|>\left|S_{k+1}\right|$, 则下列说法正确的是
A. $a_1 、 a_3 、 a_5 、 \cdots 、 a_{2 n-1}$ 为等差数列, $a_2 、 a_4 、 a_6 、 \cdots 、 a_{2 n}$ 为等比数列     B. $a_1 、 a_3 、 a_5 、 \cdots 、 a_{2 n-1}$ 为等比数列, $a_2 、 a_4 、 a_6 、 \cdots 、 a_{2 n}$ 为等差数列     C. $a_1 、 a_2 、 a_3 、 \cdots 、 a_{2022}$ 为等差数列, $a_{2023} 、 a_{2024} 、 \cdots 、 a_n$ 为等比数列     D. $a_1 、 a_2 、 a_3 、 \cdots 、 a_{2022}$ 为等比数列, $a_{2023} 、 a_{2024} 、 \cdots 、 a_n$ 为等差数列         
不再提醒