清空
下载
撤销
重做
查看原题
如图, 在 $\triangle A B C$ 中, $A C=B C$, 以 $B C$ 为 直径作 $\odot O$, 交 $A C$ 于点 $F$, 过 $C$ 点作 $C D \perp$ $A C$ 交 $A B$ 延长线于点 $D, E$ 为 $C D$ 上一点, 且 $E B=E D$.
(1) 求证: $B E$ 为 $\odot O$ 的切线:
(2) 若 $A F=2, \tan A=2$, 求 $B E$ 的长.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒