查看原题
设函数 $f(x)$ 在点 $x=2$ 处可导, $f(2)=f^{\prime}(2)=\frac{1}{2}$ ,求极限
$$
\lim _{n \rightarrow+\infty}\left(\frac{f\left(\frac{2 n+1}{n}\right)}{f(2)}\right) \dfrac{1}{\ln \left(2+\frac{1}{3 n}\right)-\ln 2}
$$
                        
不再提醒