科数网
试题 ID 3229
【所属试卷】
《高等数学》微积分第一学期期中考试模拟题练习题
设函数 $f(x)$ 在点 $x=2$ 处可导, $f(2)=f^{\prime}(2)=\frac{1}{2}$ ,求极限
$$
\lim _{n \rightarrow+\infty}\left(\frac{f\left(\frac{2 n+1}{n}\right)}{f(2)}\right) \dfrac{1}{\ln \left(2+\frac{1}{3 n}\right)-\ln 2}
$$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)$ 在点 $x=2$ 处可导, $f(2)=f^{\prime}(2)=\frac{1}{2}$ ,求极限
$$
\lim _{n \rightarrow+\infty}\left(\frac{f\left(\frac{2 n+1}{n}\right)}{f(2)}\right) \dfrac{1}{\ln \left(2+\frac{1}{3 n}\right)-\ln 2}
$$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见