清空
下载
撤销
重做
查看原题
设函数 $f(x)$ 在 $[0, a]$ 上有连续的导数,且 $f(0)=0$ , 证明 $\left|\int_0^a f(x) \mathrm{d} x\right| \leq \frac{M a^2}{2}$ ,其中 $M=\max _{0 \leq x \leq a}\left|f^{\prime}(x)\right|$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒