清空
下载
撤销
重做
查看原题
若 $f(x)$ 连续,且 $f(0)=2$ ,又函数
$$
F(x)= \begin{cases}\frac{1}{x^2} \int_0^{x^2} f(t) \mathrm{d} t, & x \neq 0 \\ a, & x=0\end{cases}
$$
连续,则 $a=$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒