查看原题
设区域 $D=\left\{(x, y) \mid 1 \leqslant x^2+y^2 \leqslant 4, x \geqslant 0, y \geqslant 0\right\}$, 则二重积分 $I=\iint_D \frac{x \sqrt{x^2+y^2}}{x+y} \mathrm{~d} x \mathrm{~d} y=$
                        
不再提醒