设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可逆矩阵, 且满足 $\boldsymbol{A B}=\boldsymbol{A}+\boldsymbol{B}$, 则下面结论:
(1) $\boldsymbol{A}+\boldsymbol{B}$ 可逆; (2) $\boldsymbol{A B}=\boldsymbol{B A}$; (3) $\boldsymbol{A}-\boldsymbol{E}$ 可逆; (4) $(\boldsymbol{B}-\boldsymbol{E}) \boldsymbol{x}=0$ 有非零解.
正确的共有
A. 1个
B. 2个
C. 3个
D. 4个