查看原题
设 $\boldsymbol{A}$ 为 $n(n \geqslant 2)$ 阶矩阵, $\boldsymbol{A}$ 是 $\boldsymbol{A}$ 的伴随矩阵, 齐次线性方程组 $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 有两个线性无关的解, 则
A. $A x=0$ 的解均是 $A^* x=0$ 的解.     B. $\boldsymbol{A}^* \boldsymbol{x}=\mathbf{0}$ 的解均是 $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 的解.     C. $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 与 $\boldsymbol{A}^* \boldsymbol{x}=0$ 没有非零公共解.     D. $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 与 $\boldsymbol{A}^* \boldsymbol{x}=\mathbf{0}$ 仅有两个非零公共解.         
不再提醒