查看原题
设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可逆矩阵, 且满足 $\boldsymbol{A B}=\boldsymbol{A}+\boldsymbol{B}$, 则下面结论:
(1) $\boldsymbol{A}+\boldsymbol{B}$ 可逆;(2) $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$; (3) $\boldsymbol{A}-\boldsymbol{E}$ 可逆; (4) $(\boldsymbol{B}-\boldsymbol{E}) \boldsymbol{x}=\mathbf{0}$ 有非零解.
正确的共有
A. 1个     B. 2个     C. 3个     D. 4个         
不再提醒