清空
下载
撤销
重做
查看原题
设函数 $f(x)$ 在区间 $[a, b]$ 上连续, 且在 $(a, b)$ 内有 $f^{\prime}(x)>0$.
证明: 在 $(a, b)$ 内存在唯一的 $\xi$, 使曲 线 $y=f(x)$ 与两直线 $y=f(\xi), x=a$ 所围平面图形面积 $S_{1}$ 是曲线 $y=f(x)$ 与两直线 $y=f(\xi)$, $x=b$ 所围平面图形面积 $S_{2}$ 的 3 倍.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒