清空
下载
撤销
重做
查看原题
已知函数 $f(x)=|x+2|+|x-n|$.
(1) 若对 $\forall x \in \mathbf{R}, f(x) \geq 2$ 恒成立, 求实数 $n$ 的取值范围;
(2) 若 $f(x)$ 的最小值为 4 , 且正数 $a, b, c$ 满足 $a+2 b+c=n$, 求 $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ 的最小值
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒