清空
下载
撤销
重做
查看原题
设 $\Sigma$ 为曲面 $z=\sqrt{x^2+y^2}$ 介于 $z=0$ 与 $z=1$ 之间部分的下侧, $f(x)$ 为连续函数, 计算
$$
I=\iint_{\Sigma}[-x f(x+y)-2 x] \mathrm{d} y \mathrm{~d} z+[-2 y-y f(x+y)] \mathrm{d} z \mathrm{~d} x+[-z f(x+y)] \mathrm{d} x \mathrm{~d} y .
$$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒