设数 $f(x)$ 在区间 $[0,+\infty)$ 上可导,则( ).
A. 当 $\lim _{x \rightarrow+\infty} f(x)$ 存在时, $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在
B. 当 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在时, $\lim _{x \rightarrow+\infty} f(x)$ 存在
C. 当 $\lim _{x \rightarrow+\infty} \frac{\int_0^x f(t) d t}{x}$ 存在时, $\lim _{x \rightarrow+\infty} f(x)$ 存在
D. 当 $\lim _{x \rightarrow+\infty} f(x)$ 存在时, $\lim _{x \rightarrow+\infty} \frac{\int_0^x f(t) d t}{x}$ 存在