查看原题
21. 设 $A$ 为 2 阶矩阵, $P=(\alpha, A \alpha)$, 其中 $\alpha$ 是非零向量且不是 $A$ 的特征向荲.
(1) 证明 $P$ 为可逆矩阵
(2) 若 $A^2 \alpha+A \alpha-6 \alpha=0$, 求 $P^{-1} A P$, 并判断 $A$ 是否相似于对角矩阵.
                        
不再提醒