清空
下载
撤销
重做
查看原题
设 $\Sigma$ 为曲面 $Z=\sqrt{x^2+y^2}\left(\leq x^2+y^2 \leq 4\right)$ 的下侧, $f(x)$ 是连续函数, 计算 $I=\iint_{\Sigma}[x f(x y)+2 x y-y] d y d z+[y f(x y)+2 y+x] d z d x+[z f(x y)+z] d x d y$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒