科数网
题号:2256 题型:解答题 来源:2020年考研数学一真题解析
设 $\Sigma$ 为曲面 $Z=\sqrt{x^2+y^2}\left(\leq x^2+y^2 \leq 4\right)$ 的下侧, $f(x)$ 是连续函数, 计算 $I=\iint_{\Sigma}[x f(x y)+2 x y-y] d y d z+[y f(x y)+2 y+x] d z d x+[z f(x y)+z] d x d y$
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$
0 人点赞
152 次查看
白板
加入试卷
答案:
解析:
答案与解析:
答案仅限会员可见
微信内自动登录
或
手机登录
或
微信扫码注册登录
点击我要
开通VIP