查看原题
设 $F_1, F_2$ 分别是椭圆 $C: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0$ ) 的左、右焦点, $M$ 是 $C$ 上一点, $M F_2$ 与 $x$ 轴垂直, 直线 $M F_1$ 与与 $C$ 的另一个交点为 $N$, 且直线 $M N$ 的斜率为 $\frac{\sqrt{2}}{4}$.
(1) 求椭圆 $\mathrm{C}$ 的离心率;
(2)设 $D(0,1)$ 是椭圆 $C$ 的上顶点, 过 $D$ 任作两条互相垂直的直线分别交椭圆 $C$ 于 $A, B$ 两点, 过点 $D$ 作线段 $A B$ 的垂线, 垂足为 $Q$, 判断在 $y$ 轴上是否存在定点 $R$, 使得 $|R Q|$ 的长度为定值? 并证明你的结论.
                        
不再提醒