设 $D=\left\{(x, y) \mid x^2+y^2 \leqslant 1\right\}$, 则 $\iint_D \frac{ e ^{x^2+y^2}}{2+x y} d x d y=$
A. 0.
B. $4 \iint_{D_1} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_1=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0, y \geqslant 0\right\}$.
C. $4 \iint_{D_2} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_2=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0, y \leqslant 0\right\}$.
D. $2 \iint_{D_3} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_3=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0\right\}$.