科数网
题号:20603    题型:单选题    来源:2025年《高等数学》数学综合训练题集
设 $D=\left\{(x, y) \mid x^2+y^2 \leqslant 1\right\}$, 则 $\iint_D \frac{ e ^{x^2+y^2}}{2+x y} d x d y=$
$\text{A.}$ 0. $\text{B.}$ $4 \iint_{D_1} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_1=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0, y \geqslant 0\right\}$. $\text{C.}$ $4 \iint_{D_2} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_2=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0, y \leqslant 0\right\}$. $\text{D.}$ $2 \iint_{D_3} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_3=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0\right\}$.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP