查看原题
设 $A$ 为 3 阶矩阵, $\alpha _1, \alpha _2, \alpha _3$ 为线性无关的向量组.若 $A \alpha _1= \alpha _2+ \alpha _3, A \alpha _2= \alpha _1+$ $\alpha _3, A \alpha _3= \alpha _1+ \alpha _2$, 则 $| A |=$
A. 1.     B. 2.     C. 3.     D. 4         
不再提醒