清空
下载
撤销
重做
查看原题
已知 $A(-2 \sqrt{2}, 0), B(2 \sqrt{2}, 0)$, 直线 $P A, P B$ 的斜率之积为 $-\frac{3}{4}$, 记动点 $P$ 的轨迹为曲线 $C$.
(1)求 $C$ 的方程;
(2) 直线 $l$ 与曲线 $C$ 交于 $M, N$ 两点, $O$ 为坐标原点, 若直线 $O M, O N$ 的斜率之和为 $-\frac{3}{4}$, 证明: $\triangle M O N$ 的面积为定值.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒