查看原题
设总体 $X$ 服从正态分布 $N\left(\mu, \sigma^2\right) . X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本,据此样本检测:假设 $H_0: \mu=\mu_0, H_1: \mu \neq \mu_0$ ,则
A. 如果在检验水平 $\alpha=0.05$ 下拒绝 $H_0$, 那么在检验水平 $\alpha=0.01$ 下必拒绝 $H_0$ 。     B. 如果在检验水平 $\alpha=0.05$ 下拒绝 $H_0$, 那么在检验水平 $\alpha=0.01$ 下必接受 $H_0$ 。     C. 如果在检验水平 $\alpha=0.05$ 下接受 $H_0$, 那么在检验水平 $\alpha=0.01$ 下必拒绝 $H_0$.     D. 如果在检验水平 $\alpha=0.05$ 下接受 $H_0$, 那么在检验水平 $\alpha=0.01$ 下必接受 $H_0$.         
不再提醒