科数网
题号:20016    题型:单选题    来源:概率论与数理统计基础训练(参数估计与检验)
设总体 $X$ 服从正态分布 $N\left(\mu, \sigma^2\right) . X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本,据此样本检测:假设 $H_0: \mu=\mu_0, H_1: \mu \neq \mu_0$ ,则
$\text{A.}$ 如果在检验水平 $\alpha=0.05$ 下拒绝 $H_0$, 那么在检验水平 $\alpha=0.01$ 下必拒绝 $H_0$ 。 $\text{B.}$ 如果在检验水平 $\alpha=0.05$ 下拒绝 $H_0$, 那么在检验水平 $\alpha=0.01$ 下必接受 $H_0$ 。 $\text{C.}$ 如果在检验水平 $\alpha=0.05$ 下接受 $H_0$, 那么在检验水平 $\alpha=0.01$ 下必拒绝 $H_0$. $\text{D.}$ 如果在检验水平 $\alpha=0.05$ 下接受 $H_0$, 那么在检验水平 $\alpha=0.01$ 下必接受 $H_0$.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP