清空
下载
撤销
重做
查看原题
如图, 在圆锥 $S O$ 中, 高 $S O=3$, 底面圆 $O$ 的直径 $A B=5, C$ 是 $O A$ 的中点, 点 $D$ 在圆 $O$ 上, 平面 $S A B \perp$ 平面 $S C D$.
(1) 证明: $C D \perp A B$;
(2) 若点 $P$ 是圆 $O$ 上动点, 求平面 $S C D$ 与平面 $S O P$ 所成角余弦值的取值范围.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒