清空
下载
撤销
重做
查看原题
设 $f(x)$ 在 $[1,+\infty)$ 上有连续的二阶导数, $f(1)=0, f^{\prime}(1)=1$, 且二元函数 $z=\left(x^2+y^2\right) f\left(x^2+y^2\right)$ 满足 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$, 求 $f(x)$ 在 $[1,+\infty)$ 上的最大值.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒