科数网
题号:18427    题型:解答题    来源:汤家凤硕士研究生入学考试(数一)2023版第八套冲刺模拟卷
设 $f(x)$ 在 $[1,+\infty)$ 上有连续的二阶导数, $f(1)=0, f^{\prime}(1)=1$, 且二元函数 $z=\left(x^2+y^2\right) f\left(x^2+y^2\right)$ 满足 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$, 求 $f(x)$ 在 $[1,+\infty)$ 上的最大值.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP