清空
下载
撤销
重做
查看原题
设 $\boldsymbol{J}$ 是元素全为 1 的 $n(\geqslant 2)$ 阶方阵, 证明 $\boldsymbol{E}-\boldsymbol{J}$ 是可逆矩阵, 且 $(\boldsymbol{E}-$ $\boldsymbol{J})^{-1}=\boldsymbol{E}-\frac{1}{n-1} \boldsymbol{J}$, 这里 $\boldsymbol{E}$ 是与 $\boldsymbol{J}$ 同阶的单位矩阵.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒