设 $\boldsymbol{J}$ 是元素全为 1 的 $n(\geqslant 2)$ 阶方阵, 证明 $\boldsymbol{E}-\boldsymbol{J}$ 是可逆矩阵, 且 $(\boldsymbol{E}-$ $\boldsymbol{J})^{-1}=\boldsymbol{E}-\frac{1}{n-1} \boldsymbol{J}$, 这里 $\boldsymbol{E}$ 是与 $\boldsymbol{J}$ 同阶的单位矩阵.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$